Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
J Clin Invest ; 134(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618957

ABSTRACT

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. Mutations in IL7R have been analyzed genetically, but downstream effector functions such as STAT5A and STAT5B hyperactivation are poorly understood. Here, we studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset and compared it with STAT5A hyperactive variants in transgenic mice. Enhanced STAT5 activity caused disrupted T cell development and promoted an early T cell progenitor-ALL phenotype, with upregulation of genes involved in T cell receptor (TCR) signaling, even in absence of surface TCR. Importantly, TCR pathway genes were overexpressed in human T-ALL and mature T cell cancers and activation of TCR pathway kinases was STAT5 dependent. We confirmed STAT5 binding to these genes using ChIP-Seq analysis in human T-ALL cells, which were sensitive to pharmacologic inhibition by dual STAT3/5 degraders or ZAP70 tyrosine kinase blockers in vitro and in vivo. We provide genetic and biochemical proof that STAT5A and STAT5B hyperactivation can initiate T-ALL through TCR pathway hijacking and suggest similar mechanisms for other T cell cancers. Thus, STAT5 or TCR component blockade are targeted therapy options, particularly in patients with chemoresistant clones carrying STAT5BN642H.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Humans , Mice , Mice, Transgenic , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein-Tyrosine Kinases , Receptors, Antigen, T-Cell/genetics , Signal Transduction , STAT5 Transcription Factor/genetics
2.
Nat Immunol ; 25(5): 847-859, 2024 May.
Article in English | MEDLINE | ID: mdl-38658806

ABSTRACT

Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.


Subject(s)
Homeostasis , Janus Kinases , Macrophages , Mice, Knockout , STAT Transcription Factors , Signal Transduction , Animals , Mice , Macrophages/immunology , Macrophages/metabolism , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Mice, Inbred C57BL , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , TYK2 Kinase/metabolism , TYK2 Kinase/genetics , Gene Expression Regulation
3.
Nat Commun ; 15(1): 2762, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553447

ABSTRACT

The significance of transient neuropeptide expression during postnatal brain development is unknown. Here, we show that galanin expression in the ventrobasal thalamus of infant mice coincides with whisker map development and modulates subcortical circuit wiring. Time-resolved neuroanatomy and single-nucleus RNA-seq identified complementary galanin (Gal) and galanin receptor 1 (Galr1) expression in the ventrobasal thalamus and the principal sensory nucleus of the trigeminal nerve (Pr5), respectively. Somatodendritic galanin release from the ventrobasal thalamus was time-locked to the first postnatal week, when Gal1R+ Pr5 afferents form glutamatergic (Slc17a6+) synapses for the topographical whisker map to emerge. RNAi-mediated silencing of galanin expression disrupted glutamatergic synaptogenesis, which manifested as impaired whisker-dependent exploratory behaviors in infant mice, with behavioral abnormalities enduring into adulthood. Pharmacological probing of receptor selectivity in vivo corroborated that target recognition and synaptogenesis in the thalamus, at least in part, are reliant on agonist-induced Gal1R activation in inbound excitatory axons. Overall, we suggest a neuropeptide-dependent developmental mechanism to contribute to the topographical specification of a fundamental sensory neurocircuit in mice.


Subject(s)
Galanin , Vibrissae , Animals , Humans , Mice , Axons/metabolism , Brain/metabolism , Galanin/metabolism , Thalamus/metabolism , Vibrissae/physiology
4.
FASEB J ; 38(3): e23448, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38305779

ABSTRACT

Diabetes causes a range of complications that can affect multiple organs. Hyperglycemia is an important driver of diabetes-associated complications, mediated by biological processes such as dysfunction of endothelial cells, fibrosis, and alterations in leukocyte number and function. Here, we dissected the transcriptional response of key cell types to hyperglycemia across multiple tissues using single-cell RNA sequencing (scRNA-seq) and identified conserved, as well as organ-specific, changes associated with diabetes complications. By studying an early time point of diabetes, we focus on biological processes involved in the initiation of the disease, before the later organ-specific manifestations had supervened. We used a mouse model of type 1 diabetes and performed scRNA-seq on cells isolated from the heart, kidney, liver, and spleen of streptozotocin-treated and control male mice after 8 weeks and assessed differences in cell abundance, gene expression, pathway activation, and cell signaling across organs and within organs. In response to hyperglycemia, endothelial cells, macrophages, and monocytes displayed organ-specific transcriptional responses, whereas fibroblasts showed similar responses across organs, exhibiting altered metabolic gene expression and increased myeloid-like fibroblasts. Furthermore, we found evidence of endothelial dysfunction in the kidney, and of endothelial-to-mesenchymal transition in streptozotocin-treated mouse organs. In summary, our study represents the first single-cell and multi-organ analysis of early dysfunction in type 1 diabetes-associated hyperglycemia, and our large-scale dataset (comprising 67 611 cells) will serve as a starting point, reference atlas, and resource for further investigating the events leading to early diabetic disease.


Subject(s)
Diabetes Mellitus, Type 1 , Hyperglycemia , Mice , Animals , Male , Diabetes Mellitus, Type 1/genetics , Endothelial Cells , Streptozocin/toxicity , Mice, Inbred C57BL , Hyperglycemia/genetics , Sequence Analysis, RNA
5.
Am J Respir Crit Care Med ; 209(9): 1152-1164, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38353578

ABSTRACT

Rationale: Chronic sarcoidosis is a complex granulomatous disease with limited treatment options that can progress over time. Understanding the molecular pathways contributing to disease would aid in new therapeutic development. Objectives: To understand whether macrophages from patients with nonresolving chronic sarcoidosis are predisposed to macrophage aggregation and granuloma formation and whether modulation of the underlying molecular pathways influence sarcoidosis granuloma formation. Methods: Macrophages were cultivated in vitro from isolated peripheral blood CD14+ monocytes and evaluated for spontaneous aggregation. Transcriptomics analyses and phenotypic and drug inhibitory experiments were performed on these monocyte-derived macrophages. Human skin biopsies from patients with sarcoidosis and a myeloid Tsc2-specific sarcoidosis mouse model were analyzed for validatory experiments. Measurements and Main Results: Monocyte-derived macrophages from patients with chronic sarcoidosis spontaneously formed extensive granulomas in vitro compared with healthy control participants. Transcriptomic analyses separated healthy and sarcoidosis macrophages and identified an enrichment in lipid metabolic processes. In vitro patient granulomas, sarcoidosis mouse model granulomas, and those directly analyzed from lesional patient skin expressed an aberrant lipid metabolism profile and contained increased neutral lipids. Conversely, a combination of statins and cholesterol-reducing agents reduced granuloma formation both in vitro and in vivo in a sarcoidosis mouse model. Conclusions: Together, our findings show that altered lipid metabolism in sarcoidosis macrophages is associated with its predisposition to granuloma formation and suggest cholesterol-reducing therapies as a treatment option in patients.


Subject(s)
Granuloma , Lipid Metabolism , Macrophages , Sarcoidosis , Humans , Animals , Mice , Macrophages/metabolism , Sarcoidosis/metabolism , Granuloma/metabolism , Female , Male , Middle Aged , Adult , Disease Models, Animal
6.
Immunity ; 57(1): 171-187.e14, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38198850

ABSTRACT

Immune responses are tightly regulated yet highly variable between individuals. To investigate human population variation of trained immunity, we immunized healthy individuals with Bacillus Calmette-Guérin (BCG). This live-attenuated vaccine induces not only an adaptive immune response against tuberculosis but also triggers innate immune activation and memory that are indicative of trained immunity. We established personal immune profiles and chromatin accessibility maps over a 90-day time course of BCG vaccination in 323 individuals. Our analysis uncovered genetic and epigenetic predictors of baseline immunity and immune response. BCG vaccination enhanced the innate immune response specifically in individuals with a dormant immune state at baseline, rather than providing a general boost of innate immunity. This study advances our understanding of BCG's heterologous immune-stimulatory effects and trained immunity in humans. Furthermore, it highlights the value of epigenetic cell states for connecting immune function with genotype and the environment.


Subject(s)
BCG Vaccine , Trained Immunity , Humans , Multiomics , Vaccination , Epigenesis, Genetic
7.
Lancet Rheumatol ; 6(2): e81-e91, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38267106

ABSTRACT

BACKGROUND: Sarcoidosis is an inflammatory condition that can affect various organs and tissues, causing the formation of granulomas and subsequent functional impairment. The origin of sarcoidosis remains unknown and there are few treatment options. Mechanistic target of rapamycin (mTOR) activation is commonly seen in granulomas of patients across different tissues and has been shown to induce sarcoidosis-like granulomas in a mouse model. This study aimed to examine the efficacy and safety of the mTOR inhibitor sirolimus as a treatment for cutaneous sarcoidosis. METHODS: We did a single-centre, randomised study treating patients with persistent and glucocorticoid-refractory cutaneous sarcoidosis with sirolimus at the Vienna General Hospital, Medical University of Vienna (Vienna, Austria). We recruited participants who had persistent, active, and histologically proven cutaneous sarcoidosis. We used an n-of-1 crossover design in a placebo-controlled, double-blind topical treatment period and a subsequent single-arm systemic treatment phase for 4 months in the same participants. Participants initially received either 0·1% topical sirolimus in Vaseline or placebo (Vaseline alone), twice daily. After a washout period, all participants were subsequently administered a 6 mg loading dose followed by 2 mg sirolimus solution orally once daily, aiming to achieve serum concentrations of 6 ng/mL. The primary endpoint was change in the Cutaneous Sarcoidosis Activity and Morphology Index (CSAMI) after topical or systemic treatment. All participants were included in the safety analyses, and patients having completed the respective treatment period (topical treatment or systemic treatment) were included in the primary analyses. Adverse events were assessed at each study visit by clinicians and were categorised according to their correlation with the study drug, severity, seriousness, and expectedness. This study is registered with EudraCT (2017-004930-27) and is now closed. FINDINGS: 16 participants with persistent cutaneous sarcoidosis were enrolled in the study between Sept 3, 2019, and June 15, 2021. Six (37%) of 16 participants were men, ten (63%) were women, and 15 (94%) were White. The median age of participants was 54 years (IQR 48-58). 14 participants were randomly assigned in the topical phase and 2 entered the systemic treatment phase directly. Daily topical treatment did not improve cutaneous lesions (effect estimate -1·213 [95% CI -2·505 to 0·079], p=0·066). Systemic treatment targeting trough serum concentrations of 6 ng/mL resulted in clinical and histological improvement of skin lesions in seven (70%) of ten participants (median -7·0 [95% CI -16·5 to -3·0], p=0·018). Various morphologies of cutaneous sarcoidosis, including papular, nodular, plaque, scar, and tattoo-associated sarcoidosis, responded to systemic sirolimus therapy with a long-lasting effect for more than 1 year after treatment had been stopped. There were no serious adverse events and no deaths. INTERPRETATION: Short-term treatment with systemic sirolimus might be an effective and safe treatment option for patients with persistent glucocorticoid-refractory sarcoidosis with a long-lasting disease-modulating effect. The effect of sirolimus in granulomatous inflammation should be investigated further in large, multi-centre, randomised clinical trials. FUNDING: Vienna Science and Technology Fund, Austrian Science Fund.


Subject(s)
Butylamines , Sarcoidosis , Sirolimus , Female , Humans , Male , Middle Aged , Glucocorticoids/pharmacology , Granuloma , Petrolatum , Sarcoidosis/drug therapy , Sirolimus/adverse effects
8.
Neuron ; 112(2): 230-246.e11, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38096816

ABSTRACT

The superior colliculus (SC) in the mammalian midbrain is essential for multisensory integration and is composed of a rich diversity of excitatory and inhibitory neurons and glia. However, the developmental principles directing the generation of SC cell-type diversity are not understood. Here, we pursued systematic cell lineage tracing in silico and in vivo, preserving full spatial information, using genetic mosaic analysis with double markers (MADM)-based clonal analysis with single-cell sequencing (MADM-CloneSeq). The analysis of clonally related cell lineages revealed that radial glial progenitors (RGPs) in SC are exceptionally multipotent. Individual resident RGPs have the capacity to produce all excitatory and inhibitory SC neuron types, even at the stage of terminal division. While individual clonal units show no pre-defined cellular composition, the establishment of appropriate relative proportions of distinct neuronal types occurs in a PTEN-dependent manner. Collectively, our findings provide an inaugural framework at the single-RGP/-cell level of the mammalian SC ontogeny.


Subject(s)
Neural Stem Cells , Superior Colliculi , Animals , Superior Colliculi/physiology , Neurons/metabolism , Neuroglia/metabolism , Neural Stem Cells/metabolism , Cell Lineage/physiology , Mammals
9.
Immunity ; 56(2): 289-306.e7, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36750099

ABSTRACT

Granulomas are lumps of immune cells that can form in various organs. Most granulomas appear unstructured, yet they have some resemblance to lymphoid organs. To better understand granuloma formation, we performed single-cell sequencing and spatial transcriptomics on granulomas from patients with sarcoidosis and bioinformatically reconstructed the underlying gene regulatory networks. We discovered an immune stimulatory environment in granulomas that repurposes transcriptional programs associated with lymphoid organ development. Granuloma formation followed characteristic spatial patterns and involved genes linked to immunometabolism, cytokine and chemokine signaling, and extracellular matrix remodeling. Three cell types emerged as key players in granuloma formation: metabolically reprogrammed macrophages, cytokine-producing Th17.1 cells, and fibroblasts with inflammatory and tissue-remodeling phenotypes. Pharmacological inhibition of one of the identified processes attenuated granuloma formation in a sarcoidosis mouse model. We show that human granulomas adopt characteristic aspects of normal lymphoid organ development in aberrant combinations, indicating that granulomas constitute aberrant lymphoid organs.


Subject(s)
Sarcoidosis , Transcriptome , Animals , Mice , Humans , Cytokines/metabolism , Granuloma , Gene Expression Profiling
10.
Clin Immunol ; 248: 109245, 2023 03.
Article in English | MEDLINE | ID: mdl-36702179

ABSTRACT

Allogeneic hematopoietic stem-cell transplantation (HSCT) seeks to reconstitute the host's immune system from donor stem cells. The success of HSCT is threatened by complications including leukemia relapse or graft-versus-host-disease (GvHD). To investigate the underlying regulatory processes in central and peripheral T cell recovery, we performed sequential multi-omics analysis of T cells of the skin and blood during HSCT. We detected rapid effector T cell reconstitution, while emergence of regulatory T cells was delayed. Epigenetic and gene-regulatory programs were associated with recovering T cells and diverged greatly between skin and blood T cells. The BRG1/BRM-associated factor chromatin remodeling complex and histone deacetylases (HDACs) were epigenetic regulators involved in restoration of T cell homeostasis after transplantation. In isolated T cells of patients after HSCT, we observed class I HDAC-inhibitors to modulate their dysbalance. The present study highlights the importance of epigenetic regulation in the recovery of T cells following HSCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia , Humans , Cell Lineage , Epigenesis, Genetic
11.
Cardiovasc Res ; 119(1): 236-251, 2023 03 17.
Article in English | MEDLINE | ID: mdl-35134856

ABSTRACT

AIMS: Acute myocardial infarction rapidly increases blood neutrophils (<2 h). Release from bone marrow, in response to chemokine elevation, has been considered their source, but chemokine levels peak up to 24 h after injury, and after neutrophil elevation. This suggests that additional non-chemokine-dependent processes may be involved. Endothelial cell (EC) activation promotes the rapid (<30 min) release of extracellular vesicles (EVs), which have emerged as an important means of cell-cell signalling and are thus a potential mechanism for communicating with remote tissues. METHODS AND RESULTS: Here, we show that injury to the myocardium rapidly mobilizes neutrophils from the spleen to peripheral blood and induces their transcriptional activation prior to arrival at the injured tissue. Time course analysis of plasma-EV composition revealed a rapid and selective increase in EVs bearing VCAM-1. These EVs, which were also enriched for miRNA-126, accumulated preferentially in the spleen where they induced local inflammatory gene and chemokine protein expression, and mobilized splenic-neutrophils to peripheral blood. Using CRISPR/Cas9 genome editing, we generated VCAM-1-deficient EC-EVs and showed that its deletion removed the ability of EC-EVs to provoke the mobilization of neutrophils. Furthermore, inhibition of miRNA-126 in vivo reduced myocardial infarction size in a mouse model. CONCLUSIONS: Our findings show a novel EV-dependent mechanism for the rapid mobilization of neutrophils to peripheral blood from a splenic reserve and establish a proof of concept for functional manipulation of EV-communications through genetic alteration of parent cells.


Subject(s)
Extracellular Vesicles , MicroRNAs , Myocardial Infarction , Mice , Animals , Neutrophils/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Extracellular Vesicles/metabolism , Myocardial Infarction/metabolism , Endothelial Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
12.
Front Immunol ; 13: 850494, 2022.
Article in English | MEDLINE | ID: mdl-35418991

ABSTRACT

Chronic rhinosinusitis with nasal polyps is affecting up to 3% of Western populations. About 10% of patients with nasal polyps also suffer from asthma and intolerance to aspirin, a syndrome called aspirin-exacerbated respiratory disease. Although eosinophilic inflammation is predominant in polyps of both diseases, phenotypic differences in the tissue-derived microenvironment, elucidating disease-specific characteristics, have not yet been identified. We sought to obtain detailed information about phenotypic and transcriptional differences in epithelial and immune cells in polyps of aspirin-tolerant and intolerant patients. Cytokine profiles in nasal secretions and serum of patients suffering from aspirin-exacerbated respiratory disease (n = 10) or chronic rhinosinusitis with nasal polyps (n = 9) were assessed using a multiplex mesoscale discovery assay. After enrichment for immune cell subsets by flow cytometry, we performed transcriptomic profiling by employing single-cell RNA sequencing. Aspirin-intolerant patients displayed significantly elevated IL-5 and CCL17 levels in nasal secretions corresponding to a more pronounced eosinophilic type 2 inflammation. Transcriptomic profiling revealed that epithelial and mast cells not only complement one another in terms of gene expression associated with the 15-lipoxygenase pathway but also show a clear type 2-associated inflammatory phenotype as identified by the upregulation of POSTN, CCL26, and IL13 in patients with aspirin-exacerbated respiratory disease. Interestingly, we also observed cellular stress responses indicated by an increase of MTRNR2L12, MTRNR2L8, and NEAT1 across all immune cell subsets in this disease entity. In conclusion, our findings support the hypothesis that epithelial and mast cells act in concert as potential drivers of the pathogenesis of the aspirin-exacerbated respiratory disease.


Subject(s)
Asthma, Aspirin-Induced , Eosinophilia , Nasal Polyps , Sinusitis , Aspirin/adverse effects , Asthma, Aspirin-Induced/genetics , Asthma, Aspirin-Induced/pathology , Chronic Disease , Eosinophilia/pathology , Epithelial Cells/metabolism , Humans , Inflammation/pathology , Mast Cells/metabolism , Nasal Polyps/metabolism , Transcriptome
13.
Development ; 149(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-34604909

ABSTRACT

The adult human skin contains a vast number of T cells that are essential for skin homeostasis and pathogen defense. T cells are first observed in the skin at the early stages of gestation; however, our understanding of their contribution to early immunity has been limited by their low abundance and lack of comprehensive methodologies for their assessment. Here, we describe a new workflow for isolating and expanding significant amounts of T cells from fetal human skin. Using multiparametric flow cytometry and in situ immunofluorescence, we found a large population with a naive phenotype and small populations with a memory and regulatory phenotype. Their molecular state was characterized using single-cell transcriptomics and TCR repertoire profiling. Importantly, culture of total fetal skin biopsies facilitated T cell expansion without a substantial impact on their phenotype, a major prerequisite for subsequent functional assays. Collectively, our experimental approaches and data advance the understanding of fetal skin immunity and potential use in future therapeutic interventions.


Subject(s)
Fetus , Flow Cytometry , Skin , T-Lymphocytes , Adult , Female , Fetus/cytology , Fetus/immunology , Humans , Male , Middle Aged , Skin/cytology , Skin/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology
14.
J Allergy Clin Immunol ; 149(2): 624-639, 2022 02.
Article in English | MEDLINE | ID: mdl-34363841

ABSTRACT

BACKGROUND: Although ample knowledge exists about phenotype and function of cutaneous T lymphocytes, much less is known about the lymphocytic components of the skin's innate immune system. OBJECTIVE: To better understand the biologic role of cutaneous innate lymphoid cells (ILCs), we investigated their phenotypic and molecular features under physiologic (normal human skin [NHS]) and pathologic (lesional skin of patients with atopic dermatitis [AD]) conditions. METHODS: Skin punch biopsies and reduction sheets as well as blood specimens were obtained from either patients with AD or healthy individuals. Cell and/or tissue samples were analyzed by flow cytometry, immunohistochemistry, and single-cell RNA sequencing or subjected to in vitro/ex vivo culture. RESULTS: Notwithstanding substantial quantitative differences between NHS and AD skin, we found that the vast majority of cutaneous ILCs belong to the CRTH2+ subset and reside in the upper skin layers. Single-cell RNA sequencing of cutaneous ILC-enriched cell samples confirmed the predominance of biologically heterogeneous group 2 ILCs and, for the first time, demonstrated considerable ILC lineage infidelity (coexpression of genes typical of either type 2 [GATA3 and IL13] or type 3/17 [RORC, IL22, and IL26] immunity within individual cells) in lesional AD skin, and to a much lesser extent, in NHS. Similar events were demonstrated in ILCs from skin explant cultures and in vitro expanded ILCs from the peripheral blood. CONCLUSION: These findings support the concept that instead of being a stable entity with well-defined components, the skin immune system consists of a network of highly flexible cellular players that are capable of adjusting their function to the needs and challenges of the environment.


Subject(s)
Cell Lineage , Lymphocytes/immunology , Single-Cell Analysis/methods , Dermatitis, Atopic/immunology , Flow Cytometry , Humans , Immunity, Innate , Killer Cells, Natural/immunology , RNA-Seq , Skin/immunology
15.
J Exp Med ; 218(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34643646

ABSTRACT

Emigration of tissue-resident memory T cells (TRMs) was recently introduced in mouse models and may drive systemic inflammation. Skin TRMs of patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) can coexist beside donor T cells, offering a unique human model system to study T cell migration. By genotyping, mathematical modeling, single-cell transcriptomics, and functional analysis of patient blood and skin T cells, we detected a small consistent population of circulating skin-derived T cells with a TRM phenotype (cTRMs) in the blood and unveil their skin origin and striking resemblance to skin TRMs. Blood from patients with active graft-versus-host disease (GVHD) contains elevated numbers of host cTRMs producing pro-inflammatory Th2/Th17 cytokines and mediating keratinocyte damage. Expression of gut-homing receptors and the occurrence of cTRMs in gastrointestinal GVHD lesions emphasize their potential to reseed and propagate inflammation in distant organs. Collectively, we describe a distinct circulating T cell population mirroring skin inflammation, which could serve as a biomarker or therapeutic target in GVHD.


Subject(s)
Immunologic Memory/immunology , Inflammation/immunology , Skin/immunology , Th2 Cells/immunology , Animals , Cytokines/immunology , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation/methods , Humans , Keratinocytes/immunology , Mice , Th17 Cells/immunology , Transplantation, Homologous/methods
16.
Circulation ; 144(12): 961-982, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34255973

ABSTRACT

BACKGROUND: Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. METHODS: Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection. RESULTS: In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype. CONCLUSIONS: Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.


Subject(s)
Atherosclerosis/immunology , Diabetes Mellitus, Experimental/immunology , Hyperglycemia/immunology , Immunity, Cellular/immunology , Leukocytes, Mononuclear/immunology , Macrophages/immunology , Animals , Atherosclerosis/pathology , Cells, Cultured , Diabetes Mellitus, Experimental/pathology , Endarterectomy, Carotid , Humans , Hyperglycemia/pathology , Leukocytes, Mononuclear/pathology , Macrophages/pathology , Mice , Mice, 129 Strain , Mice, Transgenic
17.
Nat Methods ; 18(6): 635-642, 2021 06.
Article in English | MEDLINE | ID: mdl-34059827

ABSTRACT

Cell atlas projects and high-throughput perturbation screens require single-cell sequencing at a scale that is challenging with current technology. To enable cost-effective single-cell sequencing for millions of individual cells, we developed 'single-cell combinatorial fluidic indexing' (scifi). The scifi-RNA-seq assay combines one-step combinatorial preindexing of entire transcriptomes inside permeabilized cells with subsequent single-cell RNA-seq using microfluidics. Preindexing allows us to load several cells per droplet and computationally demultiplex their individual expression profiles. Thereby, scifi-RNA-seq massively increases the throughput of droplet-based single-cell RNA-seq, and provides a straightforward way of multiplexing thousands of samples in a single experiment. Compared with multiround combinatorial indexing, scifi-RNA-seq provides an easy and efficient workflow. Compared to cell hashing methods, which flag and discard droplets containing more than one cell, scifi-RNA-seq resolves and retains individual transcriptomes from overloaded droplets. We benchmarked scifi-RNA-seq on various human and mouse cell lines, validated it for primary human T cells and applied it in a highly multiplexed CRISPR screen with single-cell transcriptome readout of T cell receptor activation.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Animals , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Cost-Benefit Analysis , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/economics , Humans , Mice , Microfluidics/methods , Receptors, Antigen, T-Cell/genetics , Single-Cell Analysis/economics , Single-Cell Analysis/methods , Transcriptome
18.
Front Immunol ; 12: 630892, 2021.
Article in English | MEDLINE | ID: mdl-33717163

ABSTRACT

Atopic dermatitis (AD) typically starts in infancy or early childhood, showing spontaneous remission in a subset of patients, while others develop lifelong disease. Despite an increased understanding of AD, factors guiding its natural course are only insufficiently elucidated. We thus performed suction blistering in skin of adult patients with stable, spontaneous remission from previous moderate-to-severe AD during childhood. Samples were compared to healthy controls without personal or familial history of atopy, and to chronic, active AD lesions. Skin cells and tissue fluid obtained were used for single-cell RNA sequencing and proteomic multiplex assays, respectively. We found overall cell composition and proteomic profiles of spontaneously healed AD to be comparable to healthy control skin, without upregulation of typical AD activity markers (e.g., IL13, S100As, and KRT16). Among all cell types in spontaneously healed AD, melanocytes harbored the largest numbers of differentially expressed genes in comparison to healthy controls, with upregulation of potentially anti-inflammatory markers such as PLA2G7. Conventional T-cells also showed increases in regulatory markers, and a general skewing toward a more Th1-like phenotype. By contrast, gene expression of regulatory T-cells and keratinocytes was essentially indistinguishable from healthy skin. Melanocytes and conventional T-cells might thus contribute a specific regulatory milieu in spontaneously healed AD skin.


Subject(s)
Dermatitis, Atopic/immunology , Melanocytes/physiology , Skin/immunology , T-Lymphocytes/immunology , Adult , Dermatitis, Atopic/pathology , Female , Humans , Male , Middle Aged , Proteomics , Transcriptome , Young Adult
19.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33561194

ABSTRACT

T cells in human skin play an important role in the immune defense against pathogens and tumors. T cells are present already in fetal skin, where little is known about their cellular phenotype and biological function. Using single-cell analyses, we identified a naive T cell population expressing αß and γδ T cell receptors (TCRs) that was enriched in fetal skin and intestine but not detected in other fetal organs and peripheral blood. TCR sequencing data revealed that double-positive (DP) αßγδ T cells displayed little overlap of CDR3 sequences with single-positive αß T cells. Gene signatures, cytokine profiles and in silico receptor-ligand interaction studies indicate their contribution to early skin development. DP αßγδ T cells were phosphoantigen responsive, suggesting their participation in the protection of the fetus against pathogens in intrauterine infections. Together, our analyses unveil a unique cutaneous T cell type within the native skin microenvironment and point to fundamental differences in the immune surveillance between fetal and adult human skin.


Subject(s)
Fetus/immunology , Immunologic Surveillance , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Skin/embryology , Skin/immunology , T-Lymphocytes/immunology , Adult , Cells, Cultured , Cytokines/metabolism , Healthy Volunteers , Humans , Intestines/embryology , Intestines/immunology , Middle Aged , RNA-Seq/methods , Single-Cell Analysis/methods , Skin/growth & development , Transcriptome
20.
Sci Immunol ; 6(55)2021 01 22.
Article in English | MEDLINE | ID: mdl-33483337

ABSTRACT

Therapeutic options for autoimmune diseases typically consist of broad and targeted immunosuppressive agents. However, sustained clinical benefit is rarely achieved, as the disease phenotype usually returns after cessation of treatment. To better understand tissue-resident immune memory in human disease, we investigated patients with atopic dermatitis (AD) who underwent short-term or long-term treatment with the IL-4Rα blocker dupilumab. Using multi-omics profiling with single-cell RNA sequencing and multiplex proteomics, we found significant decreases in overall skin immune cell counts and normalization of transcriptomic dysregulation in keratinocytes consistent with clearance of disease. However, we identified specific immune cell populations that persisted for up to a year after clinical remission while being absent from healthy controls. These populations included LAMP3 + CCL22+ mature dendritic cells, CRTH2 + CD161 + T helper ("TH2A") cells, and CRTAM + cytotoxic T cells, which expressed high levels of CCL17 (dendritic cells) and IL13 (T cells). TH2A cells showed a characteristic cytokine receptor constellation with IL17RB, IL1RL1 (ST2), and CRLF2 expression, suggesting that these cells are key responders to the AD-typical epidermal alarmins IL-25, IL-33, and TSLP, respectively. We thus identified disease-linked immune cell populations in resolved AD indicative of a persisting disease memory, facilitating a rapid response system of epidermal-dermal cross-talk between keratinocytes, dendritic cells, and T cells. This observation may help to explain the disease recurrence upon termination of immunosuppressive treatments in AD, and it identifies potential disease memory-linked cell types that may be targeted to achieve a more sustained therapeutic response.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Dendritic Cells/immunology , Dermatitis, Atopic/drug therapy , T-Lymphocytes, Cytotoxic/immunology , Th2 Cells/immunology , Adolescent , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Biopsy , Case-Control Studies , Cell Communication/immunology , Dendritic Cells/metabolism , Dermatitis, Atopic/immunology , Female , Healthy Volunteers , Humans , Immunologic Memory , Interleukin-4 Receptor alpha Subunit/antagonists & inhibitors , Interleukin-4 Receptor alpha Subunit/metabolism , Keratinocytes , Male , Middle Aged , RNA-Seq , Single-Cell Analysis , Skin/cytology , Skin/drug effects , Skin/immunology , Skin/pathology , T-Lymphocytes, Cytotoxic/metabolism , Th2 Cells/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...